(Image credit Flickr user Shannan Muskopf)
About Paramecia, and About Inheritance
First, a little background about paramecia.A paramecium is a one-celled creature. It has a distinctive shape, rather like that of a slipper; it’s the shape you see repeated on a paisley tie. The paramecium is a ciliate, which is to say that its surface has lots of little, whip-like projections called cilia. The cilia are generally arranged in parallel rows, and within the rows, each cilium has pretty much the same orientation. (This is analogous to the hairs on a patch of your skin — on a small patch the hairs all point in the same direction). The cilia wag back and forth rather like floppy oars. This concerted wagging is how the animal moves itself about.
Second, a little background about how shape and other information is passed on from generation to generation. Every living thing has received from its parent (or parents) the set of instructions necessary to physically live and grow. Those instructions are carried, in tickertape fashion, in the genes. The genes are made entirely of deoxyribonucleic acid (the famous DNA), arranged as long, long, astoundingly thin, twisty, scrunched-up tickertape-like molecules. All of modern biology is based on this idea — that virtually all the physical information that’s passed from parent to child is contained in the DNA. In a paramecium, the most famous chunks of DNA are contained in the nucleus. Some other parts of the cell also contain their own little chunks of DNA.
What Sonneborn Found
With that background in mind, consider what Sonneborn found, and how puzzling his discovery is.Tracy M. Sonneborn was an Indiana University biologist, known and much respected for doing careful research. His paramecia experiments, in particular, are carefully documented. In these experiments, Sonneborn would slice off a little chunk of a paramecium’s surface, then rotate the slice and plop it back on. It was easy to see where the grafted slice now lay. Its rows didn’t line up with the neighboring rows, and the individual cilia were oriented in the “wrong direction” compared to cilia in the neighboring, undisturbed rows. And because its cilia in the altered patch were wagging in a different direction from that of their neighbors, the altered paramecium would, typically, move in some mildly eccentric way.
The startling thing is what happened after the paramecium reproduced. For a paramecium, reproduction is usually a lonely, mitotic affair. The thing just splits itself in two.
Each offspring of a maimed paramecium turned out to have the same graft pattern as its parent, with the rotated patch of cilia in the same, odd orientation. This flipping of the paramecium’s wig makes biologists flip their own wigs, those few who have heard about it.
It’s hard, very hard, to see how this could possibly be inherited via the genes. Yet somehow the information is passed on from the paramecium that got the disfiguration to its children, and on to subsequent generations. How? How?
No comments:
Post a Comment